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On Figure 1 is depicted a spider web, which consists of three nine-gons and nine rays,

which cross in 27 points. On those spots are drawn 27 circlets (dew-drops on a spider

web).

Figure 1.

Problem 1. Inscribe the numbers 1; 2; 3; : : : ; 27 into the circlets, in such a way, that the
sums of numbers on the perimeters of the 9-gons will be the same and also the sums on
all the rays will be the same.

Such a problem (a mathematical brain-twister) is usually solved by trial and today we
can also use computers. However it would be di�cult if we had a web consisting of a
hundred 200-gons.

Solution: In Figure 2 is a table consisting of three rows and nine columns. The sums
of the numbers in each row and column are the same. If we inscribe the corresponding
numbers into the circlets of the web we will get the solution of Problem 1. We explain how
the table was made later.

4 18 20 13 27 2 22 9 11

21 5 16 3 14 25 12 23 7

17 19 6 26 1 15 8 10 24

Figure 2.
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Problem 1 can be generalized. Let a spider's web consists of m circles and n rays. We

will denote such a web W(m;n). T (m;n) will denote a rectangle which consists of m:n

squares arranged into m rows and n columns.

Problem 2. Inscribe all the numbers from the set f1; 2; 3; : : : ;mng into the circlets of the
web W(m;n) so that the sums of numbers in the n-gons are the same and the sums on all

the rays are the same.

A spider's web which can be evaluated in this way is called a magic web and such

valuations are called magic. We will consider some pairs of parameters m and n for which

the problem has or has not a solution in this paper.

A magic square Sn of order n is an n� n matrix (square table) containing the natural
numbers 1; 2; : : : ; n2 in some order, and such that the sum of the number along any row,

column, or main diagonal is a �xed constant. In [2] and elsewhere we can �nd constructions

of magic squares of order n for all natural numbers n 6= 2. There is not a magic square of

order 2, as the reader may easily verify. From the existence of Sn follows a magic valuation
of a web W(n; n).

In what fallows we will not make use of the diagonal part of thedefenetion of the magic
square.

De�nition. A magic rectangleMm;n of orderm;n is a rectangle T (m;n) into the squares
of which are inscribed all the natural numbers from the set f1; 2; 3; : : : ;mng when the sums
in all the rows are the same and the sums in all the columns are the same.

We can suppose without loss of generality that m � n. It follows directly from the
de�nition that M1;1 exists and M1;n does not exist for n � 2.

A magic rectangle Mm;n is made up from mn squares which we denote as m(i; j) for
1 � i � m; 1 � j � n:

The sum of all numbers of a magic rectangle Mm;n is

� =

mX

i=1

nX

j=1

m(i; j) =
1

2
mn(mn+ 1):

The sum of all numbers in one row of Mm;n is � = 1
2
n(mn+ 1) and in each column is

� = 1
2
m(mn+ 1):

Theorem 1. If one of the numbers m;n is even and the other is odd, then Mm;n does

not exists.

Proof. Without loss of generality we can suppose that m is even and n is odd. The product
n(mn+1) is an odd number and therefore � is not an integer. This is not possible as � is
a sum of integers. �

In individual proofs we describe constructions of corresponding magic rectangles while
leaving the veri�cation to the reader.
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Theorem 2. A magic rectangle M2;2k exists for all k > 1.

Proof. We inscribe numbers 1; 2; 3; : : : ; 2k into the �rst row of table T (m;n) and numbers

4k; (4k � 1); (4k � 2); : : : ; (2k + 1) into the second one. The sums of numbers in all the

columns (but not rows) will be the same. Di�erences of pairs of numbers in individual

columns are
f(4k � 1); (4k � 3); : : : ; 11; 9; 7; 5; 3; 1g

and their sum is 4k2. If we exchange the pair of numbers in the j-th column the corre-

sponding di�erence will change its sign and the sum will decrease. We have to show that
we can assign the signs of the di�erences so that their sum becomes zero.

If k is even (so that the number of columns is a multiple of 4), interchange the pair of

numbers in column j if and only if j = 2( mod 4) or j = 3( mod 4).

Ik k is odd (� 3) proceed as in the even case except that in the last six columns the
switch is made in the �rst and third only. �

Theorem 3. For all n > 2 a magic rectangle Mn;n2 exists.

Proof. Generate an n�n2 array as a row, T1;T2;T3; : : : ;Tn of n n�n arrays constructed
as follows: row i + 1 of Tj is simply the �rst cyclic shift of row i, and for each j > 0, the
�rst row of Ti+1 is last row of Tj . This inductive de�nition of the n�n2 array is completed
by giving the �rst row of Ti. This is 0; n

2; 2n2; 3n2; 4n2; : : : ; (n � 1)n2.
Now add (as matrices) a magic square Sn to each of the Ti. The result is a magic

rectangle Mn;n2 . �

The construction of M3;9 (on Figure 2) is shown below.

4 9 2

3 5 7

8 1 6

0 9 18

18 0 9

9 18 0

9 18 0

0 9 18

18 0 9

18 0 9

9 18 0

0 9 18

The construction of M3;9

Note. There is another magic rectangle Mn;n2 which we can obtain from a magic cube of
order n (see [3]) by cutting it into n layers and inserting into an n� n2 array.

Corollary. If a; b are natural numbers with a:b = n > 2, then there exists a magic

rectangle Man;bn.

Proof. The case a = 1 is just theorem 3.
For a > 1 use the same construction as in theorem 3, but arrange the n � n arrays in

the pattern
T1 T2 : : : Tb
Tb+1 Tb+2 : : : T2b

: : : : : :

T(a�1)b+1 : : : : : : Tab
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Theorem 4. Given magic rectangles Mm;n and Mp;q, a magic rectangle Mmp;nq is con-

structible.

Proof. Construct the np �mq array A, partitioned into p rows and q columns of m � n

cells, each of which is Mm;n.

Then construct the mp � nq array B, also partitioned into cells of size m � n. Each

cell contains mn identical elements mn� [(i; j) entry of Mp;q � 1]. Then A + B is the

required magic rectangle. �

It is shown below how aM6;12 is made using a pair of magic rectangles M2;4 andM3;3.

1 7 6 4

8 2 3 5

8 1 6

3 5 7

4 9 2

M2;4 M3;3

57 63 62 60 1 7 6 4 41 47 46 44

64 58 59 61 8 2 3 5 48 42 43 45

17 23 22 20 33 39 38 36 49 55 54 52

24 18 19 21 40 34 35 37 56 50 51 53

25 31 30 28 65 71 70 68 9 15 14 12

32 26 27 29 72 66 67 69 16 10 11 13

M6;12

From the given theorems follows the construction ofMm;n for many pairs of parameters
m;n but still there are many pairs ofm;n for which we cannot decide whetherMm;n exists.
In the following pictures M3;5 and M3;7 are given. You have certainly noticed that the
solution of problem 1 is M3;9.

1 10 14 9 6

15 2 7 11 5

8 12 3 4 13

1 12 20 8 13 6 17

14 2 10 21 5 16 9

18 19 3 4 15 11 7

M3;5 M3;7

We conclude with two problem which can be solved by using the previous results.

Problem 3. Prove that Mn;2n exists for all even n � 4.

Problem 4. Construct M3;n for some other values of parameter n � 11.
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